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LLNL Experimental Results on OMEGA: FY04 
 
Lawrence Livermore National Laboratory (LLNL) conducted approximately 360 
shots on Omega in FY04. Approximately half of the shots were devoted to ICF-
relevant experiments. These are summarized as follows: 
 
A campaign to examine the effect on a capsule of direct hydrodynamic pressure 
from the laser-heated fill gas in gas-filled hohlraums was begun. Initial results 
[Fig 1] showed that the backlit foamball surrogate gave good results at fill 
pressures above and below those ultimately desired. This series will continue in 
FY05. The interaction of a hohlraum gas fill during the hydrodynamically 
unstable deceleration phase was also measured; no substantial instability growth 
was observed, even from deliberately pre-roughened hohlraum surfaces [Fig 2]. 
 
In the area of x-ray drive, we continued to do experiments with hohlraums 
constructed of a mixture of materials (“cocktails”), in an effort to optimize x-ray 
conversion efficiency, albedo, and also laser-plasma coupling. Currently, we 
believe the consistently lower than expected improvement in radiation 
temperature for cocktail hohlraums to be due to low Z contaminants. Additional 
experiments were carried out to assess the performance of lined or foam-filled 
hohlraums, as alternates to the gas-filled NIF  hohlraum point design. The early 
results are promising, showing radiation temperatures constant to within 5% 
between types of hohlraums, and low levels of backscatter with smoothed beams 
at 5e14 W/cm2.  
 
Laser-plasma interaction studies were done on large scale length plasmas created 
by pre-heating large gas filled targets with the main laser [Fig 3]. Various 
experiments, some using a 2w or 4w probe beam, were conducted, to obtain data 
on Raman and Brillouin scattering and beam propagation [Fig 4] as a function of 
beam smoothing level. The results show reduced beam spray and backscatter by 
using increased smoothing on a 2w probe beam.  More crossing beam power 
transfer experiments (a form of Brillouin of special interest to NIF) were 
performed as a function of polarization state [Fig 5]. Thomson scattering was 
frequently used to measure the electron temperature of these plasmas, while 
backscattered light (FABS) diagnostics monitored the amount of SBS or SRS. Still 
other experiments demonstrated the ability to measure the time-resolved 
spectrum of H- and He-like Ti (5 keV) x-rays scattered by free electrons in a hot 
plasma; careful fits to the data yield temperature and density data [Fig 6]. 
Finally, a hohlraum experiment was conducted to quantify the amount of laser 
light which, at early times, is refracted from the hohlraum wall directly onto the 
implosion capsule. 
 



We continued to make systematic improvements in using target-mounted 
pinholes to image implosion cores at moderately high (> 7 keV) energies. 
Asymmetric core images were obtained at 87x magnification, demonstrating a 
method for measuring higher order (up to 6, possibly 8) mode structure in the 
hohlraum drive [Fig 7]. 
 
We obtained more data on integrated hohlraum implosions with deliberately 
roughened capsules [Fig 7]. These experiments were performed with 
convergence ratios (CR) of 15, and provide a stringent test for modeling of 
hydrodynamic instabilities. These same experiments demonstrated a small 
difference in drive asymmetry – which resulted in a degradation in neutron yield 
– if the presence or absence of polarization rotators was not accounted for in the 
laser pointing. 
 
Ablator material studies, focusing on the Rayleigh-Taylor growth factors, 
continued in FY04 on polyimide and brominated plastic[Fig 8]. The results 
confirmed greater than expected RM growth for the thinner samples, but as- 
predicted RT growth rates [Fig 9].  A new more NIF-like pulse shaped, 2D 
symmetric gas-filled halfraum experimental platform has been designed for 
August shots.   We also conducted a first experiment to look at the effect of DT 
fill tubes on an imploded capsule, using a deposited bump on the capsule as a 
surrogate for the fill tube. 
 
Building on the work on hot hohlraums (see HEDS, below), several implosion 
experiments were conducted using smaller-than-standard (3/4 size) hohlraums 
[Fig 10]. These represented the highest radiation-driven temperature implosions 
shot on laser facilities, reaching 275-285 eV, and producing symmetric cores.   In 
some experiments D-He3 was used as the fuel, supplied by LLE; and D-He3 
fusion proton yields and spectra were recorded and analyzed by MIT.  
 
In collaboration with the University of Nevada, Reno (NLUF), multiple pinhole 
imaged and spectrally dispersed data was obtained from indirectly driven, Ar-
doped fuel implosions [Fig 11]. 
 
Finally, several days of experiments were done in collaboration with LANL and 
LLE, using direct-drive DT filled targets, for the purpose of developing neutron 
diagnostics. These relatively high-yield shots have indicated that significant 
background will be present for any diagnostics or electronics which are neutron-
sensitive. 
 
The other half of the LLNL shots were devoted to High energy density science 
(HEDS)-relevant experiments. These are summarized as follows: 
 



Hot hohlraum experiments used hohlraums which were as small as possible, to 
create as high as possible radiation environments. Measurements were made on 
effective radiation temperature, high energy (“supra-thermal”) x-rays,  and laser-
target coupling. 
 
Equation of state (EOS) experiments continued on Omega in FY04. These involve 
VISAR measurements of shock propagation times in various materials. Other 
experiments focused on creating and using an adiabatic (shockless) drive [Fig 12] 
to smoothly ramp up the pressure for EOS measurements of solid (not melted) 
materials [Fig 13]. Finally, experiments done in collaboration with a NLUF 
investigator used gases which were pre-compressed in a diamond anvil cell, to 
explore equation of states relevant to the giant planets. 
 
We also used Omega shots to explore various options for obtaining x-ray point 
backlighters. It is expected this knowledge will be used on future Omega and 
NIF shots. 
 
A number of shots were devoted to studying alternative approaches to the 
standard indirect drive concept of a simple hohlraum with a single-shell capsule. 
These included “dynamic hohlraums”, where a high Z gas is directly driven and 
compressed, and its resulting x-rays are used to drive a second, concentric 
implosion capsule; and “double shells”, where the first, driven shell collides with 
an inner shell, resulting in implosion velocity multiplication. 
 
The radiation flow campaign continued in FY04, focusing on x-ray propagation 
through low density foams. 
 
A series of experiments were conducted to develop appropriate backlighter 
sources and detectors to measure the opacity of warm materials. The results of 
this campaign are expected to be used on experiments in FY05. 
 
LLNL continued a collaboration with LANL and AWE (England) on the “Jets” 
experiments, looking at large scale hydrodynamic features. 
 
Finally, we conducted shots onto gas-bag targets with various mid to high-Z 
gases, in connection with developing x-ray sources [Fig 14]. 
 
 
Figures 
 
1. Backlit foam balls in CH (low radiation) gas-filled hohlraums are used to 

measure the gas-capsule hydrodynamic coupling. 



2. End-on view of an x-ray backlit, gas-filled hohlraum, shows wall motion and 
stagnation, with no signs of increased mix due to surface roughness. 

3. Laser-plasma interaction studies use gas-bag targets to form large, well-
characterized plasmas. 

4. Laser beam smoothing effectively reduces SRS in the low density plasma 
region. 

5. Crossed beam experiments shows energy transfer under the proper plasma 
flow conditions. 

6. Compton shifted scattered x-rays are analyzed to obtain the electron 
temperature. 

7. Neutron yield degradation for convergence ratio (CR)15  implosions, as a 
function of measured capsule surface roughness. Also shown is a high 
magnification x-ray image of asymmetric imploded core, obtained at 8 keV. 

8. Polyimide Rayleigh-Taylor experiments measure growth rate of 
hydrodynamic instabilities. 

9. Early time RM growth rates are larger than expected. 
10. Low convergence implosions in small, high temperature hohlraums were 

used to confirm basic drive symmetry. 
11.  Geometry of spectrally-dispersed imager used in NLUF experiments. 
12.  Experimental target set up used to produce smoothly increasing pressure 

drive for solid target physics. 
13.  R-T results for solid vanadium. 
14. Ar-doped gas bag targets used to measure conversion efficiency into x-rays. 
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Axially backlit radiographs of gas-filled hohlraum 
show cylindrical roughness-independent interface 
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We simultaneously studied the propagation of a 2ω
and 3ω beam through ignition relevant plasmas
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Laser smoothing effectively suppresses the broad 
2w SRS in the laser blow-off region

2ω SRS spectra for I ~ 8 x 1014 W/cm2
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The broad SRS in a gasbag target has similar density and 
temperature as the LEH plasma in a NIF hohlraum.  Laser 
smoothing has a clear impact on this SRS. 
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We have baseline set of Ar-free high CR 
CH(Ge) implosion data vs surface roughness

Implosions

Yield vs surface roughness for 10 atm., 
CR = 15 CH(Ge), PS 26  implosions High contrast ultra-high 

magnification imaging 
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PS26 platform will be used for testing other capsule ablators (e.g. Be(Cu))



PIRT results for FY04 show growth rates similar to 
previous experiments
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Ablator PhysicsThin CH(Br) and polyimid ablators showing 
repeatable unexpectedly large RM growth phase
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First enhanced coupling efficiency implosions at 
NIF-relevant peak Tr gave expected symmetry

Coupling Enhancements

DD filled CH(Ge) capsule implosions
C/c = 2.2 vs. NIF baseline C/c = 2.5
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Ongoing work to further improve symmetry and coupling 
in these high Tr hohlraums using “cocktail” hohlraums
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I-Drive Campaign (Sept. 2003): Demonstrated Loading Dynamics for Laser-ICE 
in the 1+ Mbar Regime in Aluminum

July & September campaigns collected VISAR data for Laser-ICE for peak pressures from
~ 0.2 to 2 Mbar.

VISAR LASER

TO VISAR

GAP

ALUMINUM
SAMPLE

WINDOW

RESERVOIR

ABLATOR

LASER 
DRIVE 
BEAMS

UNLOADING RESERVOIR 

Ten beams with SG8 phase plates were used to drive a ~200 µm thick reservoir composed
of 12.5% brominated polystyrene across a 300 µm vacuum gap.

The target consisted of aluminum sputter coated onto a LiF window to avoid glue joints.
LowTRT / IDrive Omega Update, KT Lorenz (July 2004)



Data was acquired at three peak pressures. We will look at vanadium growth again in
August in order to acquire additional data to constrain modeling efforts.
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Friday, 6 August 2004  (Ω)

NWET X-ray Source Development
Targets:
Gasbag:
Ar (0.1%) + CH4 (99.9 %);
p= 0.5 atm
O.D. bag: 2.8 mm
O.D. washer: 4.5 mm
Transmission: > 30%

Stopper:
CH foil

Thickness= 100 µm
Diameter= 11.5 mm 
Distance to gas bag center = 2 mm

Aligned sepately, first the gasbag using TIM3 
target positioner, then the stopper using 
H2 positioner.
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